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Phase space geometry of chaotic reactive scattering: Gateways, windings, and halos

H. Wadi and L. Wiesenfeld
Laboratoire de Spectrome´trie Physique, Universite´ Joseph-Fourier Grenoble, Boıˆte Postale 87,

38402 Saint-Martin-d’He`res Cedex, France
~Received 7 May 1996!

We present a renewed geometrical approach to classical reactive scattering. We treat here a linear triatomic
indirect reaction. Geometry in phase space is presented by means of a careful analysis of the asymptotic motion
and its consequences on finite-distance properties. It allows us to define a gateway to the reaction and prob-
ability densities on the surface of section. Because of chaos, the gateway is surrounded by windings, whose
existence is proved. Windings are grouped in halos, on which statistical repartition of reactants is assumed.
Halos allow us to treat the whole chaotic scattering in a simple and meaningful way. By measuring areas, we
are able to calculate the reaction probability in a simple but realistic model. This computation agrees with
averaging over trajectories.@S1063-651X~97!09601-3#

PACS number~s!: 05.45.1b, 34.10.1x, 82.20.Fd
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I. INTRODUCTION

There has appeared recently a renewed interest in ch
scattering as a tool to deal with reactive scattering in che
cal physics. The coming of age of classical scattering the
~for a review, see@1#! has prompted a number of author
including ourselves, to try to apply the concepts of transi
chaos to the understanding of individual, simple chemi
events. One of the goals of all those studies is to try
calculate and possibly to understand the outcome of an
ementary chemical reaction, knowing that the reactants
statistically distributed in a well defined manner prior to t
reaction@2,3#. In this way, microscopic dynamics would b
related to chemical kinetics. Very simply here, we would li
to devise a simple geometrical way to calculateand to depict
the statistical outcome of a simple triatomic reactive co
sion A1BC↔ABC↔A1BC, whereA,B,C are symbols
for single atoms. Even more simplified, we shall deal he
like in another paper@4#, exclusively with the collinear, sym
metric reactionA1BA8↔ABA8↔AB1A8 and try to calcu-
late its reaction rate at a defined energy.

Thus we wish in this paper to present a classical mech
ics approach to reactive scattering throughgeometry and
probability flows in phase space. We shall limit ourselves
here to the first steps in this direction, within the framewo
of a rudimentary model. This model — two-dimension
configuration space, Morse potentials between atom
shows, nevertheless, the essential features we are loo
for: ~i! an asymptotic free motion of the fragments, whi
represents the states before reaction, and~ii ! chaotic dynam-
ics inside the interaction region, since chaos is the rule ra
than the exception in any general scattering process. Thro
a geometrical analysis of transport in phase space we s
tend to replace averages over trajectories by measure
surface areas and their intersections. We hope that su
geometrical view will open the way to a qualitative unde
standing of the phenomena at hand, for it offers a glo
visualization of the reaction process. This approach re
heavily on two approximations: first, the Born-Openheim
approximation, with one electronic level completely deco
pled from all others throughout the reactive event and s
551063-651X/97/55~1!/271~16!/$10.00
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ond, a classical approximation to the nuclear motion with
this single potential sheet. These approximations, eve
somewhat restrictive, have to be employed in order to p
point the role of chaos in reactive scattering. The type
analysis presented here has been partly inspired by an
gous ideas that have been developed in bound syste
Transport in phase space through turnstiles has been kn
for some time now@5,6# and applied in the context of micro
scopic physics~classical and quantum! by Bohigas and co-
workers@7#. Their successful extensions of transport in pha
space into the quantum regime is also an encouraging p
pect.

A. Chaos theory

From the dynamical point of view, much progress h
been made these past years in the theory of unbound Ha
tonian chaos. Chaos has long been suspected to play an
portant role in the dynamics of the molecular collisions@8#
and by now, chaotic scattering theory is well established
both its classical@1# and quantum@9# versions. Simple mod-
els such as the three-disk system have been completely
lyzed; they demonstrated the existence of transient chaos
Hamiltonian dynamics@10#. Chaotic scattering has the dis
tinctive feature that the finite distance dynamics with all
intricacies projects itself towards infinity through the Ham
tonian flow. Conversely, the asymptotic conditions are fai
fully projected into the interacting region. As a consequen
we have access to the properties of the chaotic motion tha
to suitable observables and we should be able to gain p
of the nowadays well-known structures that exist in scat
ing chaos.

All previous attempts that dealt with chaos together w
reactive scattering, including our own, concentrated on
long-time behavior of chaotic dynamics. They focused on
singularities of the various deflection functions that conn
incoming to outgoing asymptotic regions of the scatter
event. These singularities arise from the image through
Hamiltonian flow of the invariant set that exists at finite d
tance. They consist in the periodic and quasiperiodic or
embedded in the overall flow~for an image of such a set, se
@4# and Fig. 9 therein!. It is clear that finding such an invari
271 © 1997 The American Physical Society
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272 55H. WADI AND L. WIESENFELD
ant set amounts to exploring the dynamics at the infinite t
limit, in order to distinguish the invariant orbits with respe
to the very long ones. Knowing the multifractal properties
this invariant set allows one to compute the asymptotic pr
erties of the scattering chaos. Especially of interest are
average Lyapunov exponent and the escape rate. This
proachdid not, however, allow us to calculate the avera
value of observables of chemical interest and, in particu
the reaction rate.

B. Chemical physics

Without emphasis on Hamiltonian chaos, reaction dyna
ics has been the subject of a very large number of theore
works that have concentrated on one aspect or anothe
different levels of sophistication. In order to obtain the var
tions of the differential or integral cross sections, one res
most often to a time-independent quantum formalism or
classical trajectory calculations. Even if they are usually
limited by the number of dynamical states or channels, qu
tum calculations become very difficult as soon as the num
of degrees of freedom increases@11#. Nevertheless, a very
good knowledge of the scattering event may be gained f
the behavior of the different vibrational energy levels, whi
contain all the information, at least in the Born-Oppenheim
limit @12#. In classical formalisms, one computes trajector
and averages over suitable statistical ensembles~microca-
nonical or canonical!. Access to the various differential cros
sections is easy. However, because of their usual limita
to configuration~coordinate! space, it is difficult to correlate
the results with the shape of potential surfaces or chem
and dynamical variables. Also, because of the blind ave
ing process, one cannot determine the influence and im
tance of a given physical parameter in the actual value o
observable.

Some steps in the direction of geometrical analysis, wh
prompted us to do the sudy presented here, had been u
taken in the pioneering works by Pollak, Child, and Pec
kas, extending over many years@13#. They showed clearly
the crucial importance of the periodic orbits and especially
the periodic orbit dividing surfaces~PODS!. Without the
present-day knowledge of scattering chaos they analyze
depth the flow in configuration as well as in phase space
discovered the windings phenomena, without any proof@14#.

Somewhat later, several other authors began studies o
phase-space geometry of simple chemical reactions@15–18#.
The relevant concepts of transport in phase space were
in those papers, in particular for unimolecular reactions a
the H1H2 reaction. These concepts were applied in orde
criticize and improve transition state theory~TST! and to
calculate reaction rates. Indeed, many of the studies d
with the classical transition state problem. A clear image
the transition state would be a section in phase space
clearly distinguishes the flux containing only products of t
reaction. It was recognized earlier that such a definition
to be carefully scrutinized because of the occurrence
chaos and ever reentering trajectories. Still, the theory
transport in phase space, together with the notion of tu
stiles, proved to be the right tools to extend TST for gene
situations. In order to fully compare these approaches w
ours, we shall finish this discussion in Sec. VII.
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Also, by determining the Lyapunov exponent of prima
periodic orbits at finite distance and by computing their u
stable manifolds, it became possible to associate resona
with those orbits. Therefrom, many classical and semicla
cal analyses were proposed. Recently, semiclassical ch
scattering has been examined in some detail~see@19#, where
many earlier references are cited!. These authors concentra
on the periodic orbit analysis in order to reconstruct t
whole scattering picture and to recover a semiclassical im
by summation in a trace formula. An analysis of finit
distance properties of the chaotic motion in the double Mo
potential, based on the stable and unstable manifolds of
various periodic orbits, was also proposed by Berblinger a
Schlier@20#. Also in a preceeding paper@4#, studied in depth
were the finite-distance properties of the scattering cha
periodic orbits, invariant set, hierarchy of orbits, as well
the influence of those properties on global aspects of ch
Symbolic dynamics was proposed in@4# as well as in@21#. It
summarizes all the properties of the finite-distance cha
Some other recent papers also analyzed a model chem
reaction in the spirit of chaotic scattering@22,23#. A descrip-
tion of the scattering process is given and also some part
the underlying hierarchy are described.

The paper is organized as follows. Section II describes
model we use as well as the relevant Hamiltonians. Then
show in Sec. III that the reaction has to proceed throu
special parts of the phase space, called gateways. We
organize the chaos into windings~Sec. IV! and halos~Sec.
V!, on which we define measures and probabilities bef
computing an actual model reaction rate and concluding
order to anchor our approach in firm ground, we found
nececessary to adopt in several subsections rather m
ematical language. The interested reader may thus go int
technical details of our demonstrations. However, the rea
interested mostly in the geometrical and computational
sults may easily skip the relevant sections and avoid
somewhat cumbersome notations we introduced. The ac
demonstrations of lemmas and a theorem are postpone
Appendices, so that the reader may more easily follow
physical arguments. A preliminary and shortened version
this paper is published elsewhere@24#.

II. MODEL

A. Classical, collinear reactive scattering

The reaction model we shall use must be sufficien
simple in order not to be blurred with unnecessary consid
ations, yet general enough so that the conclusions of
present analysis are easily transposable to more accurate
relevant models of chemical reactions. The first and m
important limitation that we impose is the restriction to
single internuclear potential sheet. The whole subsequ
theory in its present form is thus adiabatic. Even if the
exist now many classical and semiclassical ways to ov
come this restriction and to treat properly the nonadiab
transitions@25#, we cannot include this complexity in a firs
description.

The second limitation is that we make use of a class
image of the dynamics and not a quantum one. This appr
mation, largely used in the literature, relies on the hea
masses of the nuclei. It is valid as long as the de Brog
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55 273PHASE SPACE GEOMETRY OF CHAOTIC REACTIVE . . .
wavelength does not vary too rapidlydldB /ldB!1. Equiva-
lently, if S is a characteristic action of the motion, we ha
S/\@1. We explicitly neglect such effects as tunnelin
which are known to be non-negligible for light reactantli
hydrogen or deuterium. Also, quantization of rotation a
vibration is, of course, not included.

The third limitation that we are forced into for the mo
ment is that we deal only with a collinear, symmetric rea
tion ~Fig. 1!. The two degrees of freedom arer l1 ,r l2, the
internuclear distances with a fixed center of mass. The
diatoms AB and BA8 interact exclusively with identica
Morse potentials. If this two-dimensional restriction is som
what limiting, and may be thought to be less credible from
chemical physics point of view, it is still indispensable for
visual approach to phase-space analysis. Actually, the
majority of studies of dynamics in phase space is done w
the following dimensional scheme: configuration space 2
phase space 23254D, constant energy shell 42153D, and
Poincare´ section 32152D. A well chosen section is a faith
ful image of the dynamics. If the section is 2D, it can
easily printed and visualized. The main advantage of
model we used, besides its simplicity and generality, is tha
has been studied many times and in great detail and the
vious analyses are compatible.

B. Hamiltonians

We use the following model of the symmetric colline
reaction. LetA,B,A8 be the three atoms and let the relati
coordinates ~or local coordinates! be r l15ur A2r Bu and
r l25ur A82r Bu ~Fig. 1!. By eliminating center-of-mass mo
tion, we obtain the Hamiltonian with kinetic coupling

H5
pl1
2

2mAB
1

pl2
2

2mAB
2

1

mB
pl1pl21V1~r l1!1V2~r l2!, ~1!

with mAB the reduced mass@mIJ5mImJ /(mI1mJ)#. In or-
der to restore the image of a pure potential motion, o
changes from kinetic to potential couplings@26,27#. In the
simple symmetric triatomic configuration, the kinetic co
pling can be removed by introducing two new kinema
parameters

cosw5
1

11mB /mA
, ~2!

m5
mA~mA1mB!

2mA1mB
. ~3!

Oblique coordinates are then defined as

r o15r l11r l2cosw, ~4!

r o25r l2sinw ~5!

FIG. 1. Collinear configuration of the three atoms in collisio
r l1 and r l2 are the two local coordinates.
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and the conjugate momentapo1 andpo2 follow easily. The
Hamiltonian in oblique coordinates, with potential couplin
becomes

H5
1

2m
~po1

2 1po2
2 !1V1~r o1 ,r o2!1V2~r o2!. ~6!

The Morse potential is written as

VMorse~r !5D~12e2a~r2Re!!2. ~7!

In this configuration, one may resort to the following r
duced coordinates, denoted by their tildes:

r̃5ar, ~8!

p̃5p/AmABD, ~9!

t̃5aAD/mABt, ~10!

H̃5H/D. ~11!

Please note the disappearance of a factor of 2 with respe
@4#. Since in the following we will usereduced oblique co-
ordinates only, obtained fromr o1 and r o2, we apply the
simple notationq1 ,q2 andp1 ,p2 for these new coordinate
and their conjugate momenta, respectively. In these v
ables, the reduced Hamiltonian for theABA case is

H̃5
sin2w

2
~p1

21p2
2!1$12exp@2~q12q2cotw2R̃e!#%

2

1$12exp@2~q2 /sinw2R̃e!#%
2. ~12!

Symmetric and antisymmetric coordinates are easily defi
as ~Fig. 2!

qS5~r o11r o2!/A2, ~13!

qA5~r o12r o2!/A2. ~14!

Only two parameters remain to determine the dynam
namely, the reduced energyẼ and the mass ratio cosw. In all

FIG. 2. Morse potential in oblique reduced coordinates. T
projection of theS section is shown together with the two reactio
channels. All quantities plotted here and in all subsequent figu
are dimensionless.
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274 55H. WADI AND L. WIESENFELD
subsequent figures, we setmA /mB50.5 and the reduced en
ergy Ẽ51.4. These values do not qualitatively affect the p
tures.

Let us describe the peculiarities of the potential form us
so that we can point out the limitations and the ways
overcome them.

~i! There is no finite distance threshold. Also th
AB•••A8 vibration periodic orbit is set to infinityand is
marginally stable, a zero Lyapunov exponent.

~ii ! The asymptotic behavior of the Morse potential
very peculiar; this has been clearly indicated in@4#. How-
ever, multipolar long-distance potentials between grou
state atoms and molecules are attractive and behave
r2n,n>6, which is very similar, for practical purposes,
the Morse potential. The infinitely distant periodic orbit
marignally stable sincen.2.

~iii ! For 1,Ẽ,2 Morse potentials supporttwo finite-
distance periodic orbits of a period of the order of one~in
reduced units!, namely, the antisymmetric, stableqS50 orbit
and the symmetric, unstableqA50 orbit. There exists, thus
in the middle of the chaotic saddle a stable island wh
dynamics is disconnected with asymptotic motion. For
nately, this island is surrounded by a strong, highly unsta
1:3 resonance that limits the influence of the stable isla
and the cantori. It has been observed in@4# that only high in
the hierarchy of orbits are the sticky tori observable. W
shall completely neglect this complication.

C. Asymptotic motion

Let us limit ourselves to one of the channe
r l1@r l2 ,r e , that is,q1@R̃e @28#. In reduced, oblique coor
dinates, the Hamiltonian~12!, we have approximately

H5H11H211, ~15!

where

H15
sin2wp1

2

2
, ~16!

H25
sin2wp2

2

2
1V~q2!. ~17!

One sees readily that the Hamiltonian~16! corresponds to the
free translation energyẼt while the other, Hamiltonian~17!,
energyẼv describes free diatomic vibration. These energ
are quasiadditive. The vibrational fraction is readily e
pressed in this picture asf v5Ẽv /Ẽ.

III. GATEWAYS

A. Entrance and exit gates

In this section, we describe the geometrical pathw
through which the reaction has to proceed in the phase sp
Let us choose a Poincare´ surface of sectionS that is divid-
ing. Such a surface is crossed at least once by any trajec
but for the symmetric periodic orbit. This dividing surface
here theqA50 surface~see Sec. II and Fig. 2!. On that
surface there exists well defined domains that act as entr
and exit gates to and from the interaction region and conn
-
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it to the asymptotic regions at infinity. We shall call both th
entrance and the exit the ‘‘gateways’’ of the reaction.

In Sec. II C we defined a first asymptotic part of th
scattering trajectory. It corresponds to a vibratingAB oscil-
lator and anA8 atom whose motion is nearly decoupled.
the potential coupling image~Hamiltonian in oblique coor-
dinates!, with a fixed center of mass, the energyẼ is divided
into vibrationalẼv ~theAB motion! and translationalẼt ~in-
coming A8 atom!. In phase space, the representative po
has two nearly independent motions: the first one at cons
momentum, describing the translational motion, and the s
ond one, a closed circularlike curve, describing the osci
tory motion. Their combination yields a helical trajector
For a fixed value ofẼv , all the helices differ only by a phas
and assemble to form a surface having in phase space
topology of a cylindrical surface~see Fig. 3!. Varying con-
tinuously the value ofẼv between 0 andẼ amounts to vary-
ing continuously the diameter of the cylinder, thus coveri
the whole three-dimensional manifold of all trajectories a
given energy. Let us call this cylindrical volumeC.

Since the surface of sectionS is dividing, any trajectory
belonging to the above-described cylinderC must crossS at
least once. That is, the set of all first intersections betw
S andC has a disklike topology. We callDU1 the disk and
U1 its border. The borderU1, being the trace of the wides
possible cylinder, belongs to orbits having as much vib
tional energy as possible. These orbits belong to the unst
manifold of the infinitely distant periodic orbit; see@4#. One
may thus identify this unstable manifold withU1 on S.

The potential surface being symmetric with respect
S, there corresponds to any trajectory a twin one, symme
with respect toS. Both crossS at the same point (qS ,pS),
but with an opposite sign ofpA ~Fig. 4!. Also, inverting the
direction of any trajectory is equivalent to changing the s
of the momenta and thus transforming a (qS ,pS) point on
S into a (qS ,2pS) point. We deduce that~i! DU1 is the set
of all first intersections of scattering trajectories coming fro
either channel, and ~ii ! by making the transformation
T̂(qS ,pS)8(qS ,2pS), the DU1 set is transformed into
DS15T̂(DU1). DS1 is the set of alllast intersections be-
tween theS plane and the trajectories before they dep

FIG. 3. Scheme of a trajectoryx winding on the cylinderC. All
trajectories belonging toC differ only by a phase. The intersectio
of x and theS plane is the pointP. It lies on a closed convex curve
C1, insideU1, with the unstable manifold of the periodic orbit a
infinity. DU1 is the interior ofU1.
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55 275PHASE SPACE GEOMETRY OF CHAOTIC REACTIVE . . .
definitely to infinity, in either channel. In analogy toDU1,
the border ofDS1 ,S1 belongs to the stable manifold of th
infinitely distant periodic orbits. Let us stress again that~i! to
each point ofDU1 there correspond two twin trajectorie
coming from each channel, and~ii ! to each point ofDS1
there correspond two twin trajectories, aiming at each ch
nel.

The set

DG5DU1øDS1 ~18!

will be called thegatewayof the reaction. It is shown in
Fig. 5.

We denote byM̂ the mapping associated with the Poi
caré section S. By definition, DUn5M̂ (DUn21) and
Un5M̂ (Un21). TheDUn ,n51,2, . . . , tile the whole region
of S allowed by energy. If we denote byM̂21 the inverse
map ofM̂ and we defineDSn5M̂21DSn21, another tiling of
the S section by the set of theDSn ,n51,2, . . . , may be
found.

Let us discuss theDUn tiles. First, they cover the whole
region, except for a set of measure zero, the invariant se
the chaotic scattering@29#; see@4# for details. Second, let u
suppose there exists a pointPPDUmùDUn , m,n. Then,
let us take its mth inverse image, implying
M̂2m(P)¹S for M̂2m(DUm) not defined andM̂2m(P)
PS for M̂2m(DUn), m,n, defined. So there is noP for
any finite value ofm,n.

FIG. 4. ~a! Four trajectories represented by one point onS in
configuration space.~b! Same trajectories in theS section; the two
points are related by time inversion.
n-

of

As a conclusion to this subsection, we organized the
lowed region inS into a disjoint set of successive mappin
of the entrance and exit gates. In the asymptotic region,
entrance dynamical states are very well defined; they
represented in the model by the vibrational energy probab
ties. On the surface of section at infinityS `, the microca-
nonical ensemble will be described by a density probabi
r`. The Cartan-Liouville theorem allows us to define pro
ability densities in phase space, especially on theS ` section
(r o1→`). This probability density,which is conserved in the
Hamiltonian flow, is transported towards the interaction r
gion. Then, by the definition of the entrance gateDU1,
through its one-to-one correspondence withS `, we project
the density probability of the exterior world inside the rea
tion dynamics~see Fig. 6!. The reaction proceeds by succe
sive mappings to progressively coverDS1 by the images of
DU1. This will define onDS1 a probability density after the
reaction. Similarly, for the same reasons, the reaction
namics is projected fromDS1 to the products of the reaction
again at infinity, in the outside world. Therefore, associat
probabilities with possible microcanonical dynamical sta
is equivalent to associating a probability density functi
with the entrance and exit gatesDG5DU1øDS1.

It is clear that the gateway may remind the reader of
turnstiles defined by Wiggins or others@6# as a tool for ana-
lyzing transport in phase space. There are, however, dif
ences. One is that the lobes composing the turnstile are
dered by both stable and unstable manifolds, while here

FIG. 5. Gateway to the reaction:DU1, entrance gate;DS1, exit
gate.

FIG. 6. Hamiltonian flow projects a surface from infinity to th
S section.
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276 55H. WADI AND L. WIESENFELD
perspective is such that some lobes are purely stable~or un-
stable! and some are mixed. Also, the definition of th
Un ,Sn sets is unique, in contrast to the relative characte
the ordering of lobes. This comes about from the existenc
unbound, separable motion that puts a clear limit to the
bound chaos, in opposition to phase-space motion in
presence of bound chaos. A more general and full desc
tion of the phase space at hand is deferred to a future w
Now, we have to define measures on the sets and find
way these measures follow the mappings.

B. Measure on the gates

The dynamics of the reactive scattering being Ham
tonian, it is straightforward to define an invariant measure
phase space, thanks to the Cartan-Liouville theorem. Le
denote bym(DUn) a measure ofDUn . As we have chosen
S to be spanned by two conjugate coordinates (qS ,pS) ~i.e.,
$qS ,pS%51), we may identify the measure and area

m~DUn!5E
DUn

dqSdpS . ~19!

As stated in the Introduction, the scattering system is op
This means that the total number of trajectories present in
interaction region diminishes after each Poincare´ mapping
M̂ . The measure of the successive imagesDUn must show
this decrease. Indeed, as any scattering trajectory leave
S surface throughDS1, we have the relation

m~DUn!5m~DUn21!2m~DUn21ùDS1!. ~20!

We may also inquire about the fate of a sufficiently sm
element of surfacedS5dqSdpS belonging to the entranc
gateDU1. After a certain number of successive iterations
M̂ , it will be projected into the exit gateDS1. In the mapping
process, its measure will be conserved, so t
dS(entrance)5dS(exit) for the set of invariant orbits is o
measure zero. This conservation of measure has often
underlined in different contexts of chaotic Hamiltonian d
namics@1#.

Being equipped with a measure, it is now possible to
sociate a probability density functionr(qS ,pS) with each
point (qS ,pS)PDU1, as well as an element of probabilit
dPS5rdqSdpS . We associate with an areaA in DU1 the
probability

P~A!5E
A
dPS5E

A
r~qS ,pS!dqSdpS . ~21!

Through the mappingsM̂ , this probability density function
will be transferred from the entrance gateDU1 to the exit
gateDS1. Let us look at the conservation rule ofP(A). If
An is thenth image of an area through the mappingM̂ and
dPn5rndSn an element of probability defined on it, one h

rn⇒
M̂

rn11 ,

dPn5rndSn⇒
M̂

dPn115rn11dSn11 .
f
of
-
e
p-
k.
he

-
n
us

n.
e

the

l

f

t

en

-

As trajectories are conserved for sufficiently small are
dPn5dPn11 and by the Cartan-Liouville theorem
dSn5dSn11. Thus

rn~qS ,pS!5rn11„M̂ ~qS ,pS!…. ~22!

This process eventually transformsr(qS ,pS) into
r8(qS8,pS8), with (qS8,pS8)PDS1. In summary, knowing the
transformation

r°
R

r8 ~23!

is the same as knowing how the reaction proceeds inside
interaction region between the gateways~Fig. 5!. The trans-
formationR contains all the geometrical information abo
the reaction mechanism. We changed the problem from
statistical analysis of trajectories to a problem of topolo
and measure of surfaces: What are the surfaces of inter
tion between the successiveDUn ,n51,2, . . . , and theexit
DS1? Let us remark here that theR transformation may be
simple for nonchaotic processes or exceedingly complica
if the motion is chaotic.

Finally, but most important, we also need to evaluate
mean values of the physical observables, such as reac
probability and vibrational energy. IfV̂ is any ~classical!
observable, it will take onDU1 the valueV(qS ,pS), thanks
to the Hamiltonian flow fromS ` towardsS. The set of
points satisfyingV<V(qS ,pS)<V1dV will be an element
of surface belonging toDU1. By spanning theV value,
DU1 will be charted by the different values theV̂ observable
takes on it. Similarly, by transforming (qS ,pS) into
(qS ,2pS) we obtain the corresponding chart onDS1, the
exit gate. The whole gateway is labeled by the values of
V(qS ,pS) function, for reactants and products. The me
values at the entrance and exit are easily calculated:

^V̂& in5E
DU1

V~qS ,pS!r~qS ,pS!dqSdpS , ~24!

^V̂&out5E
DS1

V~qS ,pS!r8~qS ,pS!dqSdpS . ~25!

Knowing the charts on the gateway and the reaction tra

formationr°
R

r8 allows one to calculate the mapping

^V̂& in°
R

^V̂&out.

It is thus possible to know to which kind of statistical distr
bution the reactive scattering event heads.

IV. WINDINGS

This section aims at showing the consequences of
winding theorem on the topology of theDUn surfaces, or in
other words, on the reaction dynamics. We shall thus fi
have some definitions, state the theorem, outline its dem
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stration, and then return to the consequences on the shap
the successiveDUn . The complete demonstration is show
in the Appendixes and the less mathematatically orien
reader may go from here to Fig. 8 and then to Sec. IV C

A. Definitions and notations

For all that follows, we suppose thatr oi@r o j . Let us also
recall thatVMorse→1 for r oi→`.

Let us denote byr oi
« the value ofr oi that verifies~for

r oi
« .Re)

VMorse~r oi
« !512«⇒ lim

«→0
r oi

« 5Re2 ln«/2.

Let us now consider trajectories whose translational kin
energyEt goes to zero for the sectionS «[r oi5r oi

« ~let us
recall thatS«50[S `). SectionS « is spanned by conjugat
coordinatesr o j ,po j . The Hamiltonian reads

H5
po j
2

2m
1V1~r oi

« ,r o j!1V2~r o j!.

This relation defines onS « a closed curve, which we denot
G«; see Fig. 7.

Since the VMorse potential is strictly increasing fo
r oi.Re , any trajectory going throughG« has to cross the
S Poincare´ section at least once. We denote byU1

« the inter-

FIG. 7. Various sections and curves associated with a trajec
ending inS « ~see the text for details!: ~a! in ‘‘perspective’’ and~b!
in configuration space. The decrease of amplitude of the vibratio
motion is grossly exagerated.
s of

d

ic

section with S of all trajectories coming fromG«, and

G«,«8 the set of all intersections with another sectionS «8

(«8>«). We identifyG« with G«,« ~Fig. 7!.
We see thus that the«>0 parameter is used to label th

furthest section a given trajectory may reach. A trajecto
that reaches infinity with zero kinetic translational energy
characterized by«50. Now, let us describe a given sectio

S «8, with «8.«. TheS« section is thusfurther away from

the interaction region than theS «8 section. It is easy to con

vince oneself that different curvesG«,«8, «Þ«8, may not
cross. Now, a trajectory that grazed theG« curve loses some
vibrational energy in the course of its progression fromS«

towardsS«8 ~Fig. 7!, even if this loss is exponentially sma
@30#. Since the S «8 section displays the vibrationa
coordinates—remember that vibration and translation
nearly separable in the asymptotic region—theG«,«8 is sur-
rounded by theG«8 closed curve. The argument may be r
peated for any triplet«8.«1.«2: The G«8 curve encircles
theG«1 ,«8 curve, which itself encircles theG«2 ,«8 curve. The
Hamiltonian flow transports this structure to theS section
without disturbing it, as long as the nearest sectionS «0 still
belongs to the asymptotic region.

Knowing further that lim«→0U1
«5U1, we find that the

U1
« curves encircleU1 for «.0 andU1

« encirclesU1
«8 if

«.«8. We have thus surroundedU1 by a foliation ofU1
« ,

with « uniformly increasing with distance toU1.
If we now apply inS the time-reversal transformatio

T̂(qS ,pS)5(qS ,2pS), we obtain from the familyU1
« a new

family S1
« , encircling the stable manifoldS1: T̂(U1

«)5S1
« .

Then,U1
« is the set of first interactions withS of trajectories

issued from theS « section at zero kinetic translational en
ergy andS1

« is the set of trajectories obtained fromU1
« by

inverting the sign of momenta. These are thus trajecto
whose translational kinetic energy goes to zero onS«. As
before, we have, for any value of«, M̂ (Un

«)5Un11
« and

M̂21(Sn
«)5Sn11

« As a closure relation, we have als
M̂ (S1

«)5U1
« .

B. Winding theorem

We may now state precisely the theorem~Fig. 8!.
If ~i! I belongs toS1, ~ii ! P belongs toS1

«0, ~iii ! PI is a

curve of finite length, and~iv! by going onPI, from P to
I , we define a bijection between the successive points
PI and theS1

« curves, with« diminishing continuously from
«0 to 0, thenM̂ (PI) is a spiral winding infinitely around
U1.

For the ease of the reader, the demonstration of the th
rem is dealt with in Appendix C. The theorem is essentia
a consequence of the definitions ofS1. S1 is the border be-
tween trajectories that will return and crossS once more and
trajectories that have just crossedS for the last time before
definitely going away. So the nearer a point fromPI is to
S1, the farther away the trajectory it defines will go into th
asymptotic region and the nearer toU1 it will again cross
S. By continuity arguments and by an asymptotic analysis
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278 55H. WADI AND L. WIESENFELD
phase, one can show the infinite spiral shape of the imag
PI.

C. Windings

In this section we describe the consequences of the w
ing theorem~WT! on the topology of the successiveDUn
surfaces. Here we shall be very specific in our example:
coupled identical Morse potentials, mass ratio 1:2:1, and
duced energyẼ51.4; see Sec. II B.

FIG. 8. Winding theorem. By the Poincare´ mapping, the seg-
mentPI is mapped onto the spiral wound aroundDU1.
of

d-

o
e-

In Fig. 9~a! the gatewaysDU1 andDS1 are represented
together with the limiting curveH5Ẽ. The entrance and exi
gateways do not cross each other, so that at that partic
energy and mass ratio, no trajectory crossesS only once.
DU25M̂ (DU1) is also represented in the same figure. W
see thatDU2 crossesS1, so thatDU2ùDS1Þ0” . Some tra-
jectories go to infinity after having crossedS twice. Next,
DU1, DS1, and DU3 are represented in Fig. 9~b!. DU3
crossesDS1. Some trajectories go to infinity after thre
crossings; these are the simplest reactive trajectories. We
thatDU3 is qualitatively different fromDU1 ,DU2. It winds
aroundDU1 an infinite number of times, as a consequence
the crossing ofU2 and S1: DU3W`1(DU1). Next we see
DU4 in Fig. 9~c!. We see that the following are true:

DU3 crossesDS1⇒
WT

DU4W`1~DU1! ,

DU3W`1~DU1!⇒
M̂

DU4W`1~DU2!.

ForDU5, something new appears again@see Fig. 9~d!#. Since
DU4W`1(DU2), the intersection ofU4 andS1 is made of an
infinity of disjoint bands, thinner and thinner as one nears
limit point U2ùS1 @see Fig. 9~c!#. The image of each of
these bands is a winding ofDU5 aroundDU1. In this way
s

FIG. 9. Exit gatewayDS1 and the various mappings ofDU1. ~a! The first map ofDU1, DU2, retains a regular shape~finite perimeter!.
~b! The second mappingDU3 winds an infinite number of timesDU1. ~c! The third mappingDU4 winds an infinite number of times
DU1 andDU2. ~d! The fourth mappingDU5 winds an infinite number of timesDU3 andDU2 and a double infinite number of time
DU1 ~see the text!.
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55 279PHASE SPACE GEOMETRY OF CHAOTIC REACTIVE . . .
DU5 winds around the winding of DU3, i.e.,
DU5W`1(DU3) andDU5W`2(DU1). In summary,

DU4W`1~DU1!⇒
M̂

DU5W`1~DU2!,

DU4W`1~DU2!

DU2 crossesDS1
J ⇒
WTH DU5W`2~DU1!

DU5W`1~DU3!.

The ensemble ofDUn , n53, . . . ,̀ , winds aroundDU1
an infinite number of times, in a hierarchic self-similar wa
as explained in Fig. 10. One may say that the analysis
sented thus far concentrates on the trajectories in the asy
totic regions and their fate inside the interaction region. T
analysis may be seen as complementary to the periodic
analysis and the multifractal aspects of the chaotic scatte
described earlier; see@4# or many other earlier references o
general chaotic scattering@10#.

V. HALOS

In Sec. III we defined in the Poincare sectionS two par-
ticular zones that we called the gateways of the chem
reaction. We could define an entrance gateDU1 and an exit
gateDS1. On both gates a probability density function w
defined:r(qS ,pS) andr8(qS8,pS8), respectively. The chemi
cal reaction proceeds fromr(qS ,pS) towardsr8(qS8,pS8).

Now, we have to answer simple questions about an
lated reaction: What is the overall reaction probabilityPR

and what is the mean valuêV̂& of an observableV̂? An-
swering these problems amounts to knowing howDS1 is
covered by the successive imagesDUn of DU1. In particular,
the set of reactive trajectoriesR is given by

R5 ø
k51,2, . . .

~DU2k21ùDS1!, ~26!

as a reactive trajectory crosses theS section anoddnumber
of times before leaving. We could measureR directly in a
picture ofS if the reaction were not chaotic, that is, in th
absence of windings. To see that this task is impossible,
sufficient to consider the set of windings aroundDU1; see
Fig. 9. The complexity of the covering ofDS1 by the suc-
cessiveDUn precludes any direct measurement. Yet the to

FIG. 10. Beginning of one hierarchy of discontinuities ne
U1. One shows the odd seriesDU7 which windsDU5, which winds
DU3, which windsDU1. Another series is generated byDU4.
,
e-
p-
s
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surface covered by the windings is far from negligible.
other words, windings compel us to speak in probabilis
terms in those regions where they are present. We shall
termine the probability of encountering an odd or even win
ing, coming from any part ofDU1. This leads us to the
concept ofhalos, whose purpose is to separate windin
from the rest of the flux, thus dividing the covering ofDS1
into a regular and a probabilistic part: theDUn surrounded
by its halodUn .

A. Definition

Our aim is to properly delimit zones where the windin
are located. The windings, which we defined in Sec.
come from trajectories whose translational energies go
zero far inside one of the channels. We introduce thu
critical distancer i

c5Rc,i51,2, with

VMorse~r i
c!512«c. ~27!

We calldU1 the halo ofDU1; it is the set of the first inter-
section withS of all trajectories that begin with zero kineti
energy at a distance further from the equilibrium point th
Rc. The set of all trajectories originating from theRc section

will exactly crossS on a closed line we callU1
«c, which

surrounds the unstable manifoldU1. The halodU1 is the

region between the two curvesU1 and U1
«c; see Fig. 11.

Through the transformationT̂, we define the halodS1 of

DS1 as the region between theS1 andS1
«c. Using the Poin-

carémapM̂ , one has

M̂ ~S1
«!5U1

« , «P~0,«c#, ~28!

r

FIG. 11. ~a! Windings surroundingDU1 that form dU1. ~b!
Halo dU1.
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so that

M̂ ~dS1!5dU1 . ~29!

By taking successive images, we defineUn
«c5M̂ (Un21

«c ),

n52,3, . . . . Similarly, the region betweenUn andUn
«c de-

fines the halo ofDUn , denoteddUn .

B. Pseudogateways

Let us consider the two setsHU25(DU2ødU2) ~the set
and its halo! andHS15(DS1ødS1); see Fig. 12. We know
that any trajectory whose representative point lies ins
DS1 has no image, for the trajectory heads towards infin
after this last crossing. Therefore, the setHU2ùDS1 has no
image in S. On the other side, the images of the s
HU2ùdS1 belong to the halo ofDU1, namely,dU1: the
outgoing translational energy of these trajectories goes
zero in either channel at a distance larger thanRc, so that
they will again crossS, but inside the halo ofDU1. But
these trajectories are already present in the halodU2. In
order not to count them twice, we have to admit that

M̂ @HU2ùdS1# ~30!

is not defined. We may conclude that we have to admit h
that the whole intersection of sets and halosHU2ùHS1 has
no image, similar toDU2ùDS1 having strictly no image. In
this sense, the unionHG5HU1øHS1 plays a role similar
to the gatewayDG5DU1øDS1. Therefore, we callHG the
pseudogatewayof the reaction.

Let us now try to divide a given set into regular an
irregular parts.DUn is thus divided into a regular partDZn
and a part that winds around some other setDUn2DZn ,
thus being contained is some halodUm . We have the defi-
nitions ~see Fig. 13!

Zn5M̂ @Un212~Un21ùHS1!#, ~31!

Zn
«c5M̂ @Un21

«c 2~Un21
«c ùHS1!#. ~32!

We also define, in a coherent way,

Z15U1 , ~33!

Z1
«c5U1

«c . ~34!

FIG. 12. Different Poincare´ mappings, indicated by arrows, be
tweendU1, dU2 anddS1.
e
y

t

to

re

As before,DZn is the interior of theZn curve, whiledZn is

its halo, betweenZn andZn
«c , andHZn5DZnødZn .

We shall now see the exit gateDS1 as being covered by
elements of the differentDZn and dZn . The former ones,
DZnùDS1 are theregular zones in the exit gate; they do no
show windings, and numerical evalution of their measure
possible. On the contrary, the sets of the formdZnùDS1
contain all windings, by construction. They constitute t
probabilistic zones of the exit gate. Inside an intersect
dZnùDS1 all that is hoped for is to compute the measu
ment of a definite part coming from a subset of the entra
gate.

C. Probability densities

The reactive trajectories are those that crossS an odd
number of times. Therefore, for the intersectio
DZnùDS1, the probability of being reactive is 0 or 1,n
being even or odd, respectively. For the probabilistic zo
dZnùDS1, let us denote byPn the probability of finding
inside a reactive trajectory. We shall make the further h
pothesis that the probability density associated withPn is
constant over the wholedZn surface. This amounts to sup
posing that all windings are uniformly distributed insid
dZn .

Now, taking into account that any point ofdZn is the
image of a point indZn21 and taking this relation back to
dZ1[dU1, we are led to

Pn5H P1 for oddn

12P1 for evenn.
~35!

It is enough to calculateP1 to obtain anyPn probability. In
order to calculateP1, let us begin with the following remark
The odd ~even! windings of the intersectionsHZnùdS1
yield the even~odd! windings ofdZ1. This may be seen by
forming the setM̂ (HZnùdS1). From this remark, we obtain
the following two relations on the measures:

P1m~dZ1!5 (
n>1

m~DZ2nùdS1!

1 (
n>1

~12Pn!m~dZnùdS1! ~36!

and

FIG. 13. Regular zoneDZ3 with its halodZ3, coming from the
ensembleDU3 @compare with Fig. 9~b!#.
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~12P1!m~dZ1!5 (
n>1

m~DZ2n21ùdS1!

1 (
n>1

Pnm~dZnùdS1!. ~37!

Summing Eqs.~36! and ~37! we get

m~dZ1!5 (
n>1

m~DZnùdS1!1 (
n>1

m~dZnùdS1!.

~38!

Using the relations forPn @Eqs. ~35!#, relation ~36! may be
written

P1m~dZ1!5 (
n>1

m~DZ2nùdS1!1P1(
n>1

m~dZ2nùdS1!

1~12P1! (
n>1

m~dZ2n21ùdS1!. ~39!

This leads to

P15

(
n>1

$m~DZ2nùdS1!1m~dZ2n21ùdS1!%

m~dZ1!1 (
n>1

$m~dZ2n21ùdS1!2m~dZ2nùdS1!%

.

~40!

Using Eq.~38!, P1 may be rewritten as

P15

(
n>1

$m~DZ2nùdS1!1m~dZ2n21ùdS1!%

(
n>1

$m~DZnùdS1!12m~dZ2n21ùdS1!%

. ~41!

It is clearly seen in Eq.~41! that 0<P1<1.

D. Probabilities from a part of the entrance gate

It is also interesting to compute the probability of reacti
of trajectories originating from a particular region ofDU1,
where the dynamical variableV takes a value we are inter
ested in. This region will be transported in the course of
reaction towards the exit gate. We shall thus calculate
reaction probability or the mean value of some observa
provided that we originate only from a particular part of t
entrance gate, chararacterized, through the Hamiltonian
from S ` to S, by some values of the observables. Let us c
the region insideDU1, DC1.

On the regular part, we define

DCn5M̂n~DC1!ùDZn .

Once more, as in Sec. VC, the regular parts are calcul
numerically: One measures thus the sucessive imagesDCn
of DC1 and the areas of the intersectio
(DCnùDZn)ùDS1. For the regular parts, it is useless
introduce probabilities.

However, the statistical zones ofDS1 are described by
two probabilities:Pn

0 , the probability of finding a reactive
e
e
e,

w
ll

le

trajectory in the ensemble (DZnùDCn)ùDS1, andPn
z , the

probability of finding inside some windingdZn a trajectory
originating fromDC1. We need to know bothPn

0 andPn
z in

order to know the probability of a winding to contain a
image ofDC1 that is odd, that is, a part ofDC1 that reacts.
We again make the hypothesis that windings are uniform
distributed insidedZn , so that Pn

0 and Pn
z are uniform.

Therefrom, for the same reasons as before@Eq. ~35!#, one has

Pn
05H P1

0 for odd n

12P1
0 for even n.

~42!

Furthermore, taking into account thatdZn11 is the image of
dZn and windings are uniform indZn , we have

Pn
z5P1

z ;n. ~43!

In order to calculateP1
z , we remember that the winding

dZ1 are coming from the intersectionsDZnùdS1 and
dZnùdS1. Thus

P1
zm~dZ1!5 (

n>1
m~DCnùdS1!1P1

z(
n>1

m~dZnùdS1!.

~44!

ExtractingP1
z and recalling the definition ofDZn , Eqs.~31!

and ~32!, one obtains

P1
z5

(
n>1

m~DCnùdS1!

(
n>1

m~DZnùdS1!

. ~45!

Now, for P1
0, the derivation is similar to that in Sec. V C, b

inserting the appropriateP1
z ,

P1
0P1

zm~dZ1!5 (
n>1

m~DC2nùdS1!

1P1
zFP1

0(
n>1

m~dZ2nùdS1!

1~12P1
0! (

n>1
m~dZ2n21ùdS1!G .

~46!

Therefrom, we deduce the probability of reaction, comi
from the areaDC1:

P1
05

(
n>1

m~DC2nùdS1!1P1
z(
n>1

m~dZ2n21ùdS1!

P1
zF (

n>1
m~DZnùdS1!12(

n>1
m~dZ2n21ùdS1!G .

~47!

Equations~41! and ~47! are the main quantitative results o
this paper. Together with the actual measuring of the in
sections of surfaces, they allow for a prediction of a react
rate or any observable, from the whole entrance gate o
suitable part of it.
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VI. NUMERICAL RESULTS

In order to verify our previous analysis, it is interesting
illustrate it with a specific example. We keep the same
rameters as before, namely,Ẽ51.4 andmA /mB50.5 @Eq.
~12!#. TheDU1 surface is supposed to have a constant d
sity of probability r(qS ,pS)5const. To start, we measur
the different relevant surfaces of Fig. 14. Results are sho
in Table I. Indeed, one sees that the number ofDUn ,dUn
needed is very small. 97% of the surface of the exit h
HS1 is taken into account just by measuring the intersecti
with DUn ,dUn ,n51, . . . ,5.Also, DZ4 has no intersection
since@Fig. 9~c!# it lies totally in thepS,0 region. A sum-
mary of the contributions to reaction rate is given in Table
We also have to calculateP1, the probability of being reac
tive inside an odd halo@Eq. ~41!#. We find a value of
P150.52 showing that the halos are nearly equally divid
into reactive and nonreactive trajectories. Also the relat
importance of halos~nearly 40% of the total surface! is con-
sistant with the large amount of chaos found in our ear
analysis; see@4#. There, it was found that the average numb
of loops, or successive maps in our present langua

FIG. 14. Overall outcome of the reaction, with the paramet
described in Sec. VI. The different zones that cover the exit g
DS1ødS1 are shown. The limits of theDUn sets are in full lines
and the limits of halos in dot-dashed lines. The numerical value
the areas are given in Table I.

TABLE I. Weights of the different intersections in Fig. 14. Th
notations refer to the figure. The parameters areẼ51.4 and
mA /mB50.5.

Intersection Weight~%!

DU2ùDS1 11.3
DU2ùdS1 10.8
dU2ùDS1 11.5
dU2ùdS1 4.0
DU3ùDS1 29.2
DU3ùdS1 8.9
dU3ùDS1 9.9
dU3ùdS1 5.8
DU5ùDS1 2.0
DU5ùdS1 0.9
dU5ùDS1 1.6
dU5ùdS1 0.5

remaining parts 3.6
-

-

n

o
s

.

d
e

r
r
e,

amounts to 5 atẼ51.4. As onlyDZ2 ,DZ3 contribute sig-
nificantly as nonwound regions to the reaction, it is clear t
the larger number of loops comes from the halosdZ2 ,dZ3.
The overall reaction rate is found at 58.7%. It is difficult
this stage to have an estimate of the error, which depend
many factors, uncontrolled at the moment. So the best c
parison is with a well-established method, the sum-ov
trajectory method. The maximum allowed incoming mome
tum atẼ51.4 is@Eqs.~12! and~17!# p1 max50.67. By setting
the appropriate weight function to account forr5const and
by averaging over 1000 trajectories for each of the 13 m
menta chosen, an overall mean reaction rate of 56.7%
found, in excellent agreement with the surface calculatio
These results are summarized in Table II. It is clear that
comparison is for illustrative purposes for the moment.
series of calculations, with different sets of paramete
should show the influence of phase-space geometries on
rate of reaction and how good the halo-gateway metho
with respect to a sum over trajectories.

VII. DISCUSSION

The whole analysis we have proposed in this pape
based on a careful description of the motion at the asym
totic limit and on how this near-integrable motion projec
itself onto the periodic orbit dividing surfaceS. Simply from
that analysis, we have been able to reconstruct nearly
whole image of the chaos at hand. Indeed, it is because o
non-integrable nature of the Hamiltonian that any crossing
Un and S1 occurs at all@31,32#. For a nonchaotic Hamil-
tonian,S1 and someUn would coincide and the windings
would disappear altogether. Any mixing would be absent
the course of the reaction. This simple reasoning shows
how particular the integrable case is.

In the course of the analysis, we have been able to de
on theS surface two particular zones, which form togeth
the gateway. This gateway may be crossed only once by
trajectory going to or leaving the interaction region. It is th
tempting to identify our gateway with a classical image
the transition state. It must be borne in mind, however, t
such an easy definition of the gateway was made possibl
the simplicity of the definition of the periodic orbit dividing
surfaceS. It is not yet clear how to define a gateway in
direct reaction such as H1H2→ H2 1H, where at minimum
distance there is a potential barrier instead of a well.

The extent of the intersections of the exit gate and

s
te

of

TABLE II. Summary of the different contributions to the overa
reaction rate.

Weight ~%!

P1 @Eq. ~ 41!# 52

direct ~reactive! 42.0
halos~reactive! 16.7

Total reaction rate
surfaces 58.7
trajectories 56.8
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successive maps of the entrance gate determines the ov
shape of the reaction. If nearly all trajectories leave afte
few mappings, the reaction will look simple from the outsi
and the intermediate product short lived. On the other ha
a domination of several high-order mappings will shift t
balance towards complicated trajectories and a long-lived
termediate complex. However, one must recall that thewhole
motion in phase space is analyzed here in the framewor
fully chaotic motion: hyperbolic motion in the surface
sectionS in the language of dynamics. This is what allow
us to speak about unstable periodic orbits and their st
and unstable manifolds that cross and wind. Otherw
stated, if for some defined value ofn, DUnùDS1 is very
large, most trajectories will exit aftern loops. But the es-
sence of the analysis shows that for some region of the
trance gate, a complex situation will indeed occur who
statistical weight is small.

It has often been observed that for some regions of
reaction parameters, the course of the scattering looks r
lar and for some other regions it looks chaotic@33#. One is
then tempted to find a border between chaotic and non
otic zones in reaction processes. We feel that examinatio
the various intersections of the gateway mappings provid
quantitative and qualitative basis for this distinction. It pro
erly underlines the necessary coexistence of long-lived
short-lived trajectories and the fuzziness of the barrier
tween chaotic and nonchaotic motion.

The gateway we defined is surrounded by a series of
finitely elongated images of itself, created by the Ham
tonian flow, as we described in detail: the windings. This
an image in the Poincare´ section of both chaos and asym
totic integrability. It is clear that this image, characteristic
classical mechanics —infinitely detailed structure, hierarc
cally organized with a fractal set of discontinuities—cann
survive in the real physical world. In particular, the reacti
we examine cannot survive a long time without being s
jected to any concievable kind of external perturbation; a
the spatial extent of the reaction must be short in order
the atoms not to be subjected to forces originating from o
side. It is absolutely necessary to introduce time scales
length scales over which the full classical dynamics can
survive. This has brought us to introduce the concept of
los. We believe that they should constitute a model o
bridge between rigorous classical mechanics and the
physical world in this context.

Halos are formed by the windings around the images
the entrance and exit gates. Since the dynamics inside
windings is infinitely complicated, we replace the exact p
ture by a statistical one. The border of a halo is determi
by some physical or geometrical arguments and inside
halo, we have made the assumption of an equirepartitio
the different levels of the hierarchy, each with its own ov
all probability. We are then able to calculate the relev
density probabilities inside the halos and proceed towa
reaction rates or average of observables. We showed
precisely this method works, even when we include v
large halos around the gateways and cut the hierarchy
ready at the fifth level, thereby avoiding all influence of t
Kol’mogorov-Arnold-Moser region.

As we proceed deeper and deeper into the hierarchie
DUn , we have seen that the relative importance of the re
rall
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lar, unwound parts diminishes with respect to the irregu
parts, inside windings. In our case, as soon asn>7, all levels
become superficially alike, consisting of windings of win
ings around the mainDU1 ,DU2 ,DZ3 sets. In that way, all
high-order contributions to chaos are put inside the halos
some lower-order set. The halosreplace the whole compli-
cated structure that unfolds as we go into higher and hig
n. We may thus say that halos cut the hierarchy at some le
and allow us to simplify drastically the whole picture. It
thus in some defined part of the phase space, the ensemb
the halos, that the old statistical assumptions of equirepa
tion of reactants@34# gain some validity. It would be mos
interesting to compare the gateway-halo method to so
pure statistics in the case of very extended chaos~small mea-
sure of theDZn ensembles!.

As we have said earlier, once the trajectory leaves
interior of the interaction region, a sensible model sho
include the possibility of that trajectory being perturbe
When the diatom is far from the atom for a sufficiently lon
time, it experiences perturbations from the exterior wor
The model used here is microcanonical, so that energ
conserved. Also, the perturbation acts only far from the c
ter. Its effect is thus to move the representative point in ph
space to another point in the same energy shell, also far f
the interaction region. In the picture used here, the differ
windings that form the halos are blurred, leading to the s
tistical assumption inside the halos. Actually, it was n
physically meaningful to suppose that a long-lived trajecto
extending far away, ‘‘remembers’’ where it came from, ev
if this memory is the condition for the hierarchic organiz
tion of chaos.

Also, this image of a gateway surrounded by its hal
living in phase space, is easily adaptable to a semiclass
framework in a time-dependent or -independent picture.
deed, halos provide a natural way of smoothing structu
with respect to some characteristic actionS, to be compared
to \. In that sense, one may also say that halos are a clas
image for the quantum resonances that are seen in triato
collisions, when the outgoing diatomic fragment has much
its energy trapped in a high vibrational state@35#.

As alluded to in the Introduction, several authors alrea
began to decribe the structure of the periodic orbit dividi
surfaceS. The cylindrical manifolds of DeLeonet al. @18#
are quite similar to ourU1 andS1. However, these author
did not consider scattering but closed the phase space an
subsequent works concentrated rather on isomerization
cesses. However, the structuring role of the stable or unst
manifolds of carefully chosen periodic orbits is clearly see
as well as the importance of their first and last intersecti
with theS section, called reactive islands. However, the p
sibility of having finite area per infinite perimeter island
while being latent in the figures, was not clearly describ
The successive images ofU1 and S1, which build up the
phase-space image of the reaction@theR transformation, Eq.
~23!#, have been described in some detail, with so
glimpses of the windings, by Pollaket al. @13,14#, princi-
pally in the framework of the transition state theory. A ge
eral review is provided in Ref.@36#. The reaction rate has
also been calculated either by minimizing and maximizi
flux through sections~a TST approach! or by use of the
maximum-entropy principle in the irregular regions ofS.
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Since scattering chaos was not yet fully understood as a
namical system, there was no attempt to clearly circumsc
chaos in regions, the halos, where probabilities may be
fined. However, a fully mixing dynamics was implicitly hy
pothesized in the windings, so that maximum entropy co
be used. Another surface of section was used by Davis
co-workers@15–17#, more or less along the reaction pa
~hyerbolic coordinates!. They clearly understood that ther
was chaos in their system, very similar to ours. In light of t
present work, their Figs. 11–17@17# describe the successiv
images ofU1 andS1, in a somewhat different context—thre
dividing periodic orbits at finite distance—but windings a
not seen as such. However, the surface of section used
not represent faithfully the Hamiltonian flux, since it is n
an attractive PODS, in the language of Pollak. Still, in Re
@15,16#, the gateway is clearly present and its importan
properly stressed~e.g., Fig. 10, Ref.@15#!. The appearance o
successive intersections of the lobes of the unstable m
folds (Un now! with the first lobe of the stable manifol
(S1 now! is also described and these intersections were ri
fully incorporated into the reaction rate. In retrospect,
very importance of gateways and their images in phase s
were apprehended already in the mid 1980s. Now, thank
the firm theories on the existence and properties of scatte
chaos, it has been possible to pursue further the ana
begun some time ago, towards a quantitative analysis.

The procedure we have proposed here has to be exte
in three ways. First, one has to deal with realistic colline
processes, with inclusion of potential holes and hills, as w
as a good asymptotic behavior~e.g., van der Waals!. Second,
and this is also not too demanding, we may include temp
ture in the formalism. The gateway will extend through
third dimension, energy, so that it still remains possible
visualize it. The halos should still surround it and som
model of mixing in phase space plus energy is to be
cluded. But the most important and demanding extensio
towards three degrees of freedom, including rotation and
bration of theAB fragment. Poincare´ sections are now fou
dimensional, difficult to visualize. However, the situation
not hopeless, thanks to the tremendous simplification
asymptotic separation of motions.

VIII. CONCLUSION

We have thus shown in this paper how to calculate re
tion rate in the presence of classical chaos in a simple,
meaningful, example. Rather than resorting to a blind av
aging process, we have used a quantitative description o
geometrical motion in phase space. With the help of the d
nitions of the statistical zones, the halos, we have been
to get rid of the classical intricacies of chaos in a physica
meaningful and numerically controlled fashion, thus open
the way to a geometrical analysis of simple chemical re
tivity.
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APPENDIX A

Let us recall the notations of Sec. IV. From what we ha
said, the trajectory going throughP will see its translational
kinetic energy go to zero onS«0. The state of the system i
then represented by a point on the curveG«0. If we go along
PI, fromP to I , following hypotheses~ii ! and~iv!, we define
an ensemble of trajectories, all defined uniquely by the ind
«. Let us denotex«(t) such a trajectory (x is a point in phase
space!. Each trajectoryx«(t) crosses on a specific poin
M «, on the curveG«. On the sectionS«0, «0.«, the trajec-
tory x«(t) has two crossing points: on its way outM

2

«,«0 and

on its way back fromS«, M
1

«,«0PG«,«0. We notet(«,«0), the
time the representative point takes to go back and forth,
tweenM

2

«,«0 andM
1

«,«0 . The trajectoryx(«,t) has enough
translational energy to go to the sectionS«, which is the
farthest it can go.v̄(«) is the average speed~in modulus! for
such a trajectoryx(«,t), between sectionS«0 andS« ~Fig. 7!.

Lemma 1.

lim
«→0

v̄~«!50 . ~A1!

Demonstration. Let us set the origin of times whe
x(«,t) crossesS«0. So x(«,0)PS«0 and ṙ oi.0, so that
x„«,t(«0 ,«0)…PS«0 and ṙ oi,0. The discussion rests only o
the period 0,t,t(«0 ,«0). During this period,~i! from the
Hamiltonian equation,ṙ oi is a decreasing function of time
and~ii ! the sectionS« recedes to infinity when«→0 and the
speedṙ oi remains bounded so that lim«→0t(«0 ,«)5`. Let
us choose an arbitrary speedv.0. We define on anx(«,t)
trajectory t.(«,v), the amount of time during which
u ṙ oiu.v, and t,(«,v), the amount of time during which
u ṙ oiu,v. Then

t.~«,v !< sup
«P]0,«0]

t.~«,v !,`,

so that

lim
«→0

t,~«,v !5`.

Calling vmax the maximum ofv on the trajectory, we have
the inequalities

0< v̄~«!<
t.~«,v !vmax

t.~«,v !1t,~«,v !
1

t,~«,v !v
t.~«,v !1t,~«,v !

,

~A2!

so that

0< lim«→0v̄~«!< lim
«→0

H t.~«,v !vmax
t.~«,v !1t,~«,v !

1
t,~«,v !v

t.~«,v !1t,~«,v ! J ~A3!

and
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0< lim
«→0

v̄~«!<01v. ~A4!

Equation~A4! being valid for any value ofv, one has the
desired result~A1!.

APPENDIX B

The notations are the same as before.t(«0 ,«) is consid-
ered as a function of«, 0,«<«0.

Lemma 2. t(«0 ,«) is a decreasing function of«.
Demonstration.Let us denote byd(«) the distance sepa

rating section S«0 from S«: d(«)5r oi(«)2r oi(«0)
52 ln(«/«0). We havet(«0 ,«)5d(«)/ v̄(«). Denoting by the
prime the derivation with respect to«, we have

t8~«0 ,«!5
d8~«!v̄~«!2d~«!v̄8~«!

v̄2~«!
.

Following Lemma 1,v̄(«). v̄(0)1g«5g«. Then,

t8~«0 ,«!5
211 ln~«/«0!

g«2
1•••. ~B1!

Since v̄(«).0, g.0; consequentlyt8(«0 ,«),0 for « suf-
ficiently small.

APPENDIX C

Following from the theorem of Sec. IV B, we have th
following.

Demonstration. Let $C«;«P#0,«0] % be a familiy of closed
convex curves with the following properties~see Fig. 15!.

~i! C«PS«;«P]0,«0].
~ii ! C« is insideG«,«8, for any couple 0,«8<«<«0.
~iii ! The projection of theC« curves onto the (r o2 ,po2)

space does not depend on«. Otherwise stated, the equatio
C«(r o2 ,po2)50 that defines the curveC« on S« does not
depend explicitly on«.

That one can construct such a family of curves is obvio
Now, for each curveC«, we associate a pointO«, defined by
some (r o2 ,po2) coordinates not depending on«. O

« is inside
the C« curves. Let us now consider one of those famil
$C«;O«;«P#0,«0] %. We shall now parametrize each curve
a phaseF, in the following way: The value ofF on C« is

FIG. 15. Scheme for the theorem~Appendix C!.
s.

s

defined mod 2p and the same phase is associated with t
points (r o2 ,po2 ,«) and (r o2 ,po2 ,«8), which differ only by
the sectionS to which they belong~i.e., by the fact that«
Þ«8). Let us recall that the trajectory denoted byx(«,t) has
enough translational energy to go up to the sectionS«. We
associate now a phaseF(«,«8) with that trajectory in the
following way. At time t, the trajectoryx(«,t) reaches the
sectionS«8, on the pointM «,«85x(«,t)ùS«8. We define the
phase by the oriented segment@O«8,M «,«8#; see Fig. 15.

Now that a phase is associated with a trajectory in
asymptotic domain, the demonstration proceeds in t
stages. In the first stage the winding theorem is valid
S«0, that is, if M0,«0 belongs toG0,«0, if the M «0 ,«0M0,«0

segment is of finite length whenpo1.0 ~outgoing trajec-
tory!, and there exists a bijection betweenM «0 ,«0M0,«0 and
the interval @«0,0#, then M

«0 ,«0M0,«0 , po1,0 ~incoming
trajectory! is a spiral curve winding infinitely aroundG0,«0.
In the second stage, if the theorem is true onS«0, it is true on
S.

To demonstrate the first stage, let us denote byF I(«) the
phase of the trajectoryx(«,t) on the first crossing ofS«0

~outgoing,po1.0) andFF(«) the phase of the trajector
x(«,t) on the second crossing ofS«0 ~ingoing,po1,0). We
define a timet(«) as

FF~«!2F I~«!5
2p

t~«!
t~«0 ,«!, ~C1!

where 2p/t(«) represents the average phase velocity for
trajectory x(«,t) between its two crossings ofS«0. Let us
examine Eq.~C1! for «→0. We have the following.

~i!

t~«!5t~0!1u1~«!,

where

lim
«→0

u1~«!50.

Indeed, when«→0, the trajectory spends an arbitrary lon
time arbitrarily near the section at infinityS0. Now, near
S0, trajectories tend to follow arbitrarily closely the evolu
tion of a Morse oscillator of energyE21. Then, timet(«)
converges towards a valuet(0)Þ0, so that

2p

t~«!
5

2p

t~0!
@11u2~«!#.

where, as in the previous case,

lim
«→0

u2~«!50.

~ii ! The segmentM «0 ,«0M0,«0 is of finite length. Indeed, it
is the image by the Hamiltonian flux of a finite length se
mentPI over a finite time. AsPI is parametrized by a con
tinuous index, it is always possible to write

F I~«!5F I~0!1u3~«!,

again with
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lim
«→0

u3~«!50.

Summarizing, we write the result

FF~«!5f I~0!1
2p

t~0!
t~«0 ,«!1u~«!,

~C2!

lim
«→0

u~«!50.

Equation ~C2! means thatFF(«) behaves liket(«0 ,«)/
t(0). Following the sign oft(0), for sufficiently small val-
,

s

A

ues of «, the functionFF(«) is a decreasing~increasing!
function of «, going to1` (2`) when« goes to zero.

To demonstrate the second stage let us consider, on
15, with «85«0, the oriented segmentO«0M «,«0. This seg-
ment has, by the Hamiltonian flux, an image onS of finite
length, extending away fromU1. The curveM «0 ,«0M0,«0

cuts theO«0M «,«0 segment an infinite number of times, a
ways in the same sense. Therefrom we deduce thatM̂ (PI)
cuts an infinite number of times, always in the sam
sense, any oriented segment betweenU1 andU1

«0. We say

thatM̂ (PI) winds aroundU1. This concludes the demonstra
tion.
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